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Abstract

An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone

problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input–output data

and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application

at fixed Mach numbers. Transient measurements made during controller adaptation at fixed Mach number revealed that

the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at

some point with no degradation in control performance. The control algorithm demonstrated multiple Rossiter mode

suppression at fixed Mach numbers of 0.275, 0.32, and 0.38, provided the plant model was updated for each Mach number.

However, as in the case of fixed-gain GPC, the adaptive GPC was limited by spillover in sidebands around the suppressed

Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach

number was varied over a modest range (0.275–0.29). Beyond this range, stable operation of the control algorithm was not

possible due to the fixed plant model in the algorithm.

Published by Elsevier Ltd.
1. Introduction

This article is the second of two parts that describes experiments aimed at the development of a real-time
adaptive controller for the cavity flow-tone problem. Of particular interest is the self-tuning adaptive
controller shown in Fig. 1. The inner loop of this control structure is a dynamic feedback control system
comprised of the process and controller, with a reference signal equal to zero for the present application. In the
outer loop, system identification is performed to estimate the parameters of a dynamic model for the process
and these are subsequently used to design the control law. Running this outer loop at the sample rate of the
inner loop feedback control system allows the system to track process changes and maintain the control
objective.
ee front matter Published by Elsevier Ltd.
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Fig. 1. Block diagram of a self-tuning adaptive controller (after Astrom and Wittenmark [1]).
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As a first step towards a self-tuning adaptive controller, Part I considered the application of a dynamic
feedback controller to the cavity flow-tone problem, with model identification and control design performed
offline in a batch mode. That approach was based on the assumption that the cavity dynamics were linear and
time invariant for any given fixed Mach number. The result was a series of linear, fixed-gain control laws valid
only for the Mach numbers at which they were designed. The particular control design methodology used in
Part I was generalized predictive control (GPC). The GPC demonstrated simultaneous suppression of multiple
Rossiter modes at fixed Mach numbers ranging from 0.275 to 0.38. The suppression was found to be global
since all pressure sensors within the cavity exhibited similar reductions in cavity-tone amplitudes. This success
indicates that the approach taken is a sound methodology for cavity flow-tone control and sets the framework
for an adaptive controller. The need for an adaptive controller is evident in the results of Part I, where small
changes in the Mach number were found to degrade the performance of fixed gain control laws. The Mach
number sensitivity of the cavity dynamics therefore necessitates an adaptive control design algorithm that
adjusts the controller coefficients to maintain optimal suppression.

Previous attempts at adaptive control of cavity-flow tones have been reported in the literature. Cattafesta et
al. [2] applied an adaptive disturbance rejection algorithm to a cavity flow at Mach 0.74 and achieved 10 dB
suppression of a single Rossiter mode. Other modes in the cavity spectrum, however, were unaffected by the
control system. While the disturbance-rejection algorithm should be able to suppress multiple tonal
components, insufficient actuator bandwidth and authority limited the control performance to a single mode.
Williams and Morrow [3] applied an adaptive feedforward scheme to the cavity flow-tone problem and
demonstrated multiple cavity-tone suppression at Mach numbers up to 0.48. This was accompanied, however,
by simultaneous amplification of other cavity tones. In general, a feedforward scheme that does not account
for the feedback path from the actuator to the reference sensor inside the cavity will result in a poorly
performing or unstable control system. Numerical simulations were used by Kestens and Nicoud [4] to study
the adaptive control of cavity-flow tones. In that study, the filtered-� least-mean squares (LMS) algorithm
was used to minimize the output of a single error sensor, i.e., a point measurement of pressure in the
computational domain. A reduction in the pressure associated with a single Rossiter mode was achieved, but
only within a small region around the error sensor. Several factors contribute to the poor control performance.
First, system identification was performed with no flow, and so the process dynamics associated with the
aeroacoustic feedback loop are not properly modeled. Second, the finite impulse response filters used to
represent the process dynamics are unsuitable for the cavity flow [5], where lightly damped modes dominate
the acoustic spectrum. Finally, similar to the feedforward scheme used by Williams and Morrow, the reference
signal senses the control input. Although these past efforts have not met with great success, the application of
adaptive control to the cavity flow-tone problem should not be ruled out since it is clear that hardware
limitations, suboptimal control algorithms, and suboptimal process model selection/identification contributed
to poor control performance.
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To move further towards a self-tuning adaptive controller for the cavity flow-tone problem, this article
focuses on the controller design block shown in Fig. 1. Specifically, the offline GPC design presented in Part I
is extended to a recursive algorithm that updates the coefficients of a GPC control law at every time step. The
coefficient updates are computed as a convolution of error sensor responses with a fixed plant model that is
computed offline in a batch mode. This approach provides some adaptability to changes in the plant.
Nonetheless, for a given fixed Mach number, the control performance for a control law designed online is
expected to yield similar performance to a control law designed offline.

In the next section, the control methodology and adaptive GPC algorithm are presented. This is followed by
a description of the experimental setup. The results section presents the transient and steady-state
characteristics of the adaptive controller as applied to the cavity-flow test bed. Comparisons of fixed gain
and adaptive GPC results are then made, followed by adaptive control results for a time varying Mach
number.
2. Control methodology

In this section, the control methodology and adaptive GPC algorithm are presented. The overall control
objective is to minimize the fluctuating pressures on the cavity walls. This is achieved by placing a piezoelectric
flap actuator at the cavity leading edge with the aim to cancel shear layer instability waves due to the
aeroacoustic feedback. Pressure transducers embedded in the cavity walls provide feedback signals and
performance measures for the controller.

In Part I, the cavity dynamics were found to be characterized as the forced response of a lightly damped
system. Therefore, an auto-regressive/exogenous-input (ARX) model structure was chosen to represent the
open-loop cavity-flow dynamics [6,7]:

yðkÞ ¼ a1yðk � 1Þ þ � � � þ apyðk � pÞ þ b0uðkÞ þ � � � þ bpuðk � pÞ, (1)

where yðkÞ are the m� 1 wall-pressure outputs, uðkÞ are the r� 1 actuator inputs, p is the model order,
and k is the current time step. The coefficient matrices, ai ði ¼ 1; 2; . . . ; pÞ of m�m and bi ði ¼ 0; 1; 2; . . . ; pÞ
of m� r, are the ARX model parameters or the observer Markov parameters. To determine the ob-
server Markov parameters of the model, the observer-Kalman filter identification algorithm of Juang [7]
was applied to input–output data collected from the baseline cavity flow. The parameters for this model
structure will be different for any given fixed Mach number, but are assumed to remain constant at a given
condition.
2.1. Adaptive generalized predictive control

The present objective is to develop a recursive update equation for the coefficients of a generalized
predictive controller. To that end, a predictive matrix equation based on the model in Eq. (1) is formed, a cost
function representing the desired control objective is defined, and a stochastic gradient-descent algorithm is
used to iteratively search for the optimal control coefficients that minimize the cost function. As in Part I, the
predictive matrix equation formed from the model in Eq. (1) is given by [8–11]

ysðkÞ ¼ TusðkÞ þHvpðk � pÞ, (2)

where ysðkÞ is an sm� 1 vector of current and future wall-pressure outputs:

ysðkÞ ¼

yðkÞ

yðk þ 1Þ

..

.

yðk þ s� 1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (3)
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usðkÞ is an sr� 1 vector of current and future actuator inputs:

usðkÞ ¼

uðkÞ

uðk þ 1Þ

..

.

uðk þ s� 1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (4)

and vpðk � pÞ is a pðmþ rÞ � 1 vector of past inputs and outputs running from time step k � p to k � 1:

vpðk � pÞ ¼

uðk � pÞ

..

.

uðk � 1Þ

yðk � pÞ

..

.

yðk � 1Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

. (5)

The parameter s is referred to as the prediction horizon. The predictive matrix equation states that the future
output data depends on the future control inputs and past input–output data. The matrix T is an sm� sr

Toeplitz matrix:

T ¼

b0
bð1Þ0 b0
bð2Þ0 bð1Þ0 b0

..

. ..
. . .

. . .
.

bðs�1Þ0 bðs�2Þ0 � � � bð1Þ0 b0

2
666666664

3
777777775
, (6)

where b0; b
ð1Þ
0 ; . . . ; b

ðs�1Þ
0 are the pulse response parameters of the open-loop plant. These parameters can be

obtained from the observer Markov parameters [8]. The rectangular matrix H is formed with a set of recursive
equations and the observer Markov parameters [8]. As will be shown below, however, this matrix is not needed
in the real-time implementation of the adaptive controller.

Previously, the vector for current and future control inputs, usðkÞ, was proportional to the vector of past
inputs and outputs, vpðk � pÞ. That is, the generalized predictive controller designed in an offline batch mode
can be represented by

usðkÞ ¼ Hvpðk � pÞ, (7)

where H denotes the sr� pðmþ rÞ matrix of controller coefficients. While the coefficients in that
case were constant values for a given Mach number, the development below will result in a recursive
equation that updates the values of H at each time step, k, always seeking to minimize a desired cost
function.

With the control objective being disturbance rejection at the system output, or minimization of wall-
pressure output, an appropriate cost function can be defined as

J ¼ yTs ðkÞQysðkÞ þ g trðHTHÞ, (8)

where J is a scalar value, g is a scalar weighting factor, and trð�Þ denotes the trace of the matrix in parentheses.
The first term in Eq. (8) is the sum of the weighted, squared output values over the prediction horizon andQ is
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a sm� sm block-diagonal matrix of sensor weights:

Q ¼

Q1 0 0

0 . .
.

0

0 0 Qs

2
664

3
775, (9)

where Qi is an m�m diagonal matrix of sensor weights:

Qi ¼ diagðq1; q2; . . . ; qmÞ. (10)

The sensor weights q1; . . . ; qm take on values between 0 and 1. A value of zero means that the sensor is not
included in the cost function, but the sensor information will still be used by the feedback controller.

The second term in the cost function penalizes the controller coefficients and, as will be shown below, gives
rise to a leakage factor in the update algorithm. This penalty term differs from the one used in Part I, where an
explicit penalty term on the control input was used in the cost function, i.e., uTs lus. Both penalty terms have the
similar effect of imposing an effort penalty on the control input to avoid large control inputs and actuator
saturation. When using the present cost function defined in Eq. (8), however, the resulting update equation is
easier to implement and less computationally expensive. With the assumed model given in Eq. (2), and
assuming the plant is time-invariant, solving for the optimal controller becomes a linear algebra problem. The
result is a fixed-gain feedback controller which is optimal for a fixed Mach number. This is essentially a
receding horizon control law [12], and its use was discussed in Part I.

To enable an adaptive controller that maintains good performance while the Mach number is changing, a
stochastic gradient descent algorithm is used to minimize the cost function in Eq. (8). This algorithm updates
the controller coefficients at each time step with

Hðk þ 1Þ ¼ HðkÞ � m
qJðkÞ

qHðkÞ
, (11)

where the gradient of J is an instantaneous or stochastic estimate and m sets the adaptive rate of the algorithm.
This equation is the basis for the well known LMS algorithm [13,14].

An instantaneous estimate of the gradient of the cost function can be determined by substituting
Eqs. (2) and (7) into Eq. (8) and taking the derivative with respect to HðkÞ. After some algebraic mani-
pulation:

qJðkÞ

qHðkÞ
¼ 2TTQysðkÞv

T
p ðk � pÞ þ 2gHðkÞ. (12)

This gradient estimate assumes qvpðk � pÞ=qHðkÞ is zero, which means the derivatives of past inputs
and outputs with respect to the current weights are assumed to be zero. A similar approximation has been
used to derive other adaptive filter structures, such as Feintuch’s IIR-LMS algorithm [15], Eriksson’s
filtered-u algorithm [16], and adaptive filters used in active noise control [17]. Like the current algorithm,
these other adaptive algorithms are computationally simple and appear to have a self-stabilizing pro-
perty [17]. Nonetheless, this approximation needs to be examined in the context of the current feedback
filter structure as part of a more thorough statistical analysis of the convergence properties of this
algorithm.

Substituting this expression into Eq. (11) gives

Hðk þ 1Þ ¼ aHðkÞ � 2mTTQysðkÞv
T
p ðk � pÞ, (13)

where a ¼ ð1� 2mgÞ. Examination of the update equation indicates that it depends on future input values,
usðkÞ, and future output values, ysðkÞ, and so cannot be implemented in real time. However, assuming the
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gradient of the cost function does not change significantly over the prediction horizon, s, the data vectors can
be shifted back in time by s time steps and the update equation becomes:

Hðk þ 1Þ ¼ aHðkÞ � 2mTTQysðk � sÞvTp ðk � p� sÞ. (14)

The variable a in the update equation is referred to as the leakage factor and, as noted earlier, it arises from the
g trðHTHÞ term in the cost function [13,18,19]. The value of a is typically set to slightly less than one (e.g.,
a ¼ 0:9999). Including leakage in the update equation results in a small degradation in the nominal
performance that would otherwise be achieved if g was set to zero in the cost function (Eq. (8)). On the other
hand, including leakage in the update equation has several benefits that outweigh this performance
degradation. Leakage improves robustness and rate of convergence [13,14,19], counteracts the parameter drift
that can occur in the standard LMS algorithm [13], and most importantly, leakage acts like an effort penalty
on the control input [18,19].

The control law in Eq. (7) yields a vector of current and future inputs. In the real-time imple-
mentation of this control law, however, the current control effort, uðkÞ, is applied to the process and the
future values are discarded at each time step. Therefore, it is sufficient to compute the current control
effort as

uðkÞ ¼ hvpðk � pÞ, (15)

where h denotes the first r rows of the matrix H. In turn, the update equation can be rewritten to update the
r� pðmþ rÞ matrix h as

hðk þ 1Þ ¼ ahðkÞ � 2mfTTQgrysðk � sÞvTp ðk � p� sÞ, (16)

where the subscript r denotes the first r rows of the matrix TTQ.
Eqs. (15) and (16) are the key equations for implementation of the adaptive GPC algorithm. No

assumptions have been made with regard to the number of inputs and outputs in the development of these
equations. Therefore, they can be applied to general multiple input–output systems. A listing of the control
algorithm for real-time implementation is shown below. As this listing indicates, all that is needed to
implement this algorithm is an estimate of the observer Markov parameters and measurements of
input–output data. The primary advantage of this algorithm is that it is computationally simple and therefore
consumes a relatively small portion of the digital signal processor turnaround time during each sample update.
Since the eventual goal for cavity-tone control is to include online system identification, the low computational
cost for updating the controller gains is a definite advantage.

There are several parameters in the algorithm that must be tuned to achieve a balance between optimal
performance and stability of the controller: the model order p, the prediction horizon s, the adaptive rate m, the
leakage factor a, the sensor weights Qi, and the sampling rate. Although the parameter values are problem
dependent, experience provides some guidelines for their selection. The model order is selected through system
identification. The key issue in this case is to choose p large enough such that all of the pertinent open-loop
dynamics are captured by the model. The prediction horizon should be at least equal to the model order, but
in practice, is typically taken as 2–3 times the model order [10]. For the sampling rate, experience indicates that
a value 2–3 times the highest frequency results in the best performance [10]. The highest frequency in the
present context is the highest Rossiter frequency of interest.

The parameter m controls the convergence rate of the algorithm. As the value of m is increased, the
convergence time of the algorithm decreases, but for too large a value, the algorithm will become unstable.
Ideally, m should be chosen such that the convergence time of the algorithm is smaller than the time scale over
which the process dynamics change.

As mentioned above, the numerical value of a is typically slightly less than 1. As the leakage
factor approaches 1, the control effort penalty decreases, resulting in a more aggressive controller. It is
important to recall that a also depends on m; i.e., a ¼ 1� 2mg. For example, if m is decreased but a re-
mains the same, the implication is that g has increased. A larger value of g results in a larger control-effort
penalty and therefore, a more sluggish, stable controller. The upshot of this interdependence is m and a must
both be tuned to achieve a balance between the optimal performance, convergence rate, and algorithm
stability.
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Algorithm listing
System identification

Determine the model parameters and form the matrix, fTTQgr
Initialization

Initialize the algorithm by setting

hð0Þ ¼ 0

For each time step

Update the data vectors ysðk � sÞ and vpðk � p� sÞ

Update the controller coefficients

hðk þ 1Þ ¼ ahðkÞ � 2mfTTQgrysðk � sÞvTp ðk � p� sÞ

Compute the current control effort

uðkÞ ¼ hðkÞvpðk � pÞ
3. Experimental details

The experimental hardware used for the adaptive GPC experiments was the same as that described in Part I.
All experiments were performed in the NASA-Langley Research Center Probe Calibration Tunnel. The
rectangular cavity model was fixed to an aspect ratio of ‘=d ¼ 5. As before, the cavity model was instrumented
with a pair of piezoresistive pressure transducers; one sensor located in the front cavity wall centerline 12mm
down from the leading edge and the second located on the floor centerline 15mm upstream from the rear wall.
The actuator was a piezoelectric bimorph cantilever beam with its tip situated at the cavity leading edge. The
actuator response was found to be characteristic of a 2nd-order under-damped system with a natural
frequency of � 1200Hz and a DC gain of � 0:25 mm=V. The control hardware consisted of anti-alias filters, a
16 bit A/D, a floating-point digital signal processor, a 14-bit D/A, and a reconstruction filter. The adaptive
GPC algorithm was coded and compiled to run on the digital signal processor at a sample-time interval of
250ms. Further details on the experimental hardware and setup can be found in Part I.

4. Results and discussion

The results of the control experiments are presented in this section. Three freestream Mach numbers were
considered: M1 ¼ 0:275, 0.32, and 0.38. Throughout the tests, the cavity geometry was fixed to an aspect ratio
of ‘=d ¼ 5, the total pressure was 138 kPa, and the total temperature was 297K. The Reynolds number based
on cavity length ðRe‘ ¼ ‘U1=nÞÞ for the three conditions ranged from 1:2� 106 to 1:6� 106. Baseline pressure
spectra for the three test conditions are presented in Fig. 2. A single-input/two-output, ARX model of the
cavity dynamics was formed for each Mach number using experimental input–output data and the observer-
Kalman identification algorithm of Juang [7]. A model order of p ¼ 80 was used for all test conditions. Data
were collected to describe both the transient behavior of the controller, while the control coefficients were
converging, and the steady-state behavior, after the coefficients had converged.

4.1. Transient behavior of the control algorithm

The time evolution of the closed-loop performance of the algorithm was examined through measurement of
unsteady pressures and controller coefficients while the control algorithm was adapting. Unsteady pressure
time series were collected in a pre-/post-trigger mode, where the trigger condition was control on. The adaptive
controller coefficients were also sampled at every 100th time step. Ten triggered data sets were acquired for
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Fig. 2. Baseline pressure spectra of rear-floor sensor for ‘=d ¼ 5 cavity. — M1 ¼ 0:275, ��� M1 ¼ 0:32, � � � M1 ¼ 0:38.
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each test condition so stochastic variations in convergence behavior could be averaged out. In each case, the
initial controller coefficients were set to zero.

The short-time Fourier transform, which provides a measure of time evolution in the frequency domain,
was estimated for each of the 10 triggered data sets and block averaged to reduce random uncertainty in the
estimate. The short-time Fourier transform of a pressure signal is defined as [20]

STFTðt;oÞ ¼
Z

pðtÞw�ðt� tÞe�jot dt, (17)

where � denotes the complex conjugate and wðtÞ is a window function that has a short duration. The short-
time Fourier transform is typically visualized by plotting the square of the magnitude as a contour plot. This
‘‘spectrogram’’ represents the time-dependent power spectrum of the time series. The spectrogram was
estimated by dividing the time series into several overlapping blocks, each one advancing in time. The blocks
were then multiplied by a hanning window function and Fourier transformed. The time and frequency
resolution of the short-time Fourier transform was 13ms and 7.8Hz, respectively. The short-time Fourier
transform was estimated for each of the 10 triggered data sets and then block averaged to reduce the random
uncertainty in the estimate.

Spectrograms of the rear-floor pressure at M1 ¼ 0:275 for two different values of the adaptation parameter
are shown Figs. 3 and 4. All algorithm parameters were the same between these two runs except the adaptation
parameter, m, was ten times higher in Fig. 3 than in Fig. 4, and the leakage factor, a, was adjusted accordingly
for the two cases to maintain the same value for the control effort penalty factor, g. In each plot the vertical
line at 0 s denotes control on. The spectral lines associated with the first four Rossiter modes are clearly evident
in the figures. After control is on, as the control coefficients adapt, the amplitude of each Rossiter mode is
reduced, eventually reaching an asymptotic level. An examination of the sampled controller coefficients
reveals that they too reach a steady-state level in the mean. However, the coefficients do exhibit stochastic
fluctuations about these mean levels.

The primary difference between the spectrograms is the rate at which the Rossiter modes reach their final
suppressed levels. In fact, for the smaller m value data presented in Fig. 4, it takes an order of magnitude longer
for all Rossiter modes to reach their final state. To see this more clearly, the values of the two spectrograms at
a particular frequency versus time were plotted. The spectrogram data at f ¼ 613Hz, plotted in Fig. 5,
represents the time evolution of Rossiter mode 2 for the two adaptive rate values. The baseline level of the
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Fig. 4. Spectrogram of the rear-floor pressure sensor at M1 ¼ 0:275 and m ¼ 1� 10�5. Adaptive controller was turned on at t ¼ 0.

Colormap scale is in dB re 2� 10�5 Pa.

Fig. 3. Spectrogram of the rear-floor pressure sensor at M1 ¼ 0:275 and m ¼ 1� 10�4. Adaptive controller was turned on at t ¼ 0.

Colormap scale is in dB re 2� 10�5 Pa.
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spectrogram has been shifted so that it reads 0 dB prior to control on. For m ¼ 1� 10�4, Rossiter mode 2 is
suppressed by approximately 10 dB within a few seconds of control on. Decreasing the value of m by an order
of magnitude increases the convergence time by the same factor, but the final level of suppression is essentially
the same.

In Part I, the input sensitivity function was shown to provide a good measure of control performance. To
see if this is the case for the adaptive controller, the sampled controller coefficients and the open-loop plant
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model were used to compute the input sensitivity at f ¼ 613Hz for every 100th time step. In doing so, a key
assumption is that the controller coefficients are ‘‘frozen’’ at their current values for any given time step. This
was performed for each of the 10 data sets and then block averaged. The results are shown in Fig. 5 for
comparison to the spectrogram data. Like the measured mode amplitude, the input sensitivity also reaches a
steady-state level. This occurs because the controller transfer function converges to a steady state. The
convergence of the controller transfer function to a steady-state suggests that adaptation can be stopped after
some time to freeze the controller coefficients with no degradation in performance. Pressure spectra measured
with a fixed set of converged controller coefficients confirmed this.

It is of interest to note that the averaged sensitivity data presented in Fig. 5 is much smoother than the
averaged short-time Fourier transform data. This is because the adaptive GPC, due to its recursive nature,
inherently averages noise in the pressure responses. The controller coefficients, although they do vary
stochastically, will vary much less than the actual unsteady pressures, for most reasonable values of
adaptation rate, m. The relationship between Si variance and m can be observed in Fig. 5, where lower values of
m exhibit less variance in the input sensitivity.

The input sensitivity is observed to closely match the trend of the measured mode amplitude with time and
therefore, it can be used to study the transient control performance at other Rossiter frequencies. In Fig. 6, the
input sensitivity at Rossiter modes 1 through 4 for the M1 ¼ 0:275 case is plotted for two adaptive rates. The
plot demonstrates that the different Rossiter modes are suppressed at different rates. The dominant mode is
suppressed first, followed by the second largest mode, and so on. Nevertheless, given sufficient time, all
Rossiter modes reach a steady-state level of suppression for a fixed Mach number.

4.2. Steady-state control performance

As discussed in the previous section, the controller coefficients were found to converge to steady-state values
in the mean. Repeated runs of the adaptive control algorithm at a fixed Mach number further revealed that the
controller coefficients converge to the same values. Once the controller converged, time series of the unsteady
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Fig. 6. Time evolution of input sensitivity for two adaptive rates (— m ¼ 1:0� 10�4, ��� m ¼ 1:0� 10�5): (a) Rossiter mode 1 at

240Hz, (b) Rossiter mode 2 at 613Hz, (c) Rossiter mode 3 at 945Hz, (d) Rossiter mode 4 at 1320Hz. M1 ¼ 0:275.
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wall pressures were collected and pressure spectra were computed. The spectra were computed using 1024
point FFTs, a hanning window, 50% overlap, and 160 block averages. The frequency resolution for the power
spectrum estimates was 3.9Hz.

Control results for the three Mach number conditions are presented in Figs. 7a, 8a, and 9a. The figures show
baseline and controlled pressure spectra measured at the rear-floor sensor. These results are representative of
the best performance achieved for each flow condition, given several runs of the controller for a range of
algorithm parameters. Table 1 lists the algorithm parameters for the results shown in Figs. 7–9. For all cases,
the model order used in system identification was 80 and the prediction horizon was set to 240. The sensor
weights for the two outputs were zero for the front sensor ðq1Þ and one for the rear sensor ðq2Þ. The control
performance was found to be weakly dependent on the sensor weights, and only subtle differences were
observed with different values of sensor weightings. At each flow condition the convergence rate, m, and
leakage parameter, a were adjusted to achieve the best performance while maintaining stability and avoiding
actuator saturation. Multiple Rossiter modes were suppressed by the control algorithm at all three conditions.
For the M1 ¼ 0:275 case in particular, the first four Rossiter modes exhibit some suppression. The broadband
levels of the pressure fluctuations are not significantly altered in any of the control runs.



ARTICLE IN PRESS

0 500 1000 1500 2000
105

110

115

120

125

130

135

140

frequency (Hz)

0 500 1000 1500 2000

0

5

10

15

frequency (Hz)

p
e
rf

o
rm

a
n
c
e
 (

d
B

)

p
re

s
s
u
re

 s
p
e
c
tr

u
m

 (
d
B

 r
e
 2

.0
e
-5

 P
a
)

-5

-10

-15

Fig. 7. Adaptive GPC results at M1 ¼ 0:275: (a) Baseline (���) and controlled (—) pressure spectra measured at rear-floor sensor, (b)
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Fig. 8. Adaptive GPC results at M1 ¼ 0:32: (a) Baseline (���) and controlled (—) pressure spectra measured at rear-floor sensor, (b)

measured performance (���) and input sensitivity (—) for GPC.
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In Part I, a performance measure was defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
YH

clYcl

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YH

olYol

q , (18)

where Ycl and Yol are vectors of the Fourier transform for the controlled and baseline cases, respectively,
and H denotes the complex-conjugate transpose. Eq. (18) essentially provides a scalar measure of distur-
bance rejection for the multiple output sensors, where a value less than one indicates disturbance attenuation
and a value greater then one indicates disturbance amplification. The performance measure was cal-
culated for each of the control cases and the results are represented by the dashed lines in Figs. 7b, 8b, and 9b.
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Fig. 9. Adaptive GPC results at M1 ¼ 0:38: (a) Baseline (���) and controlled (—) pressure spectra measured at rear-floor sensor, (b)

measured performance (���) and input sensitivity (—) for GPC.

Table 1

Adaptive GPC algorithm parameters

M1 Model order p Pred. horizon s Sensor weights Leakage factor a Adaptive rate m

q1 q2

0.275 80 240 0 1 0.999995 1� 10�4

0.32 80 240 0 1 0.99999 1� 10�5

0.38 80 240 0 1 0.999999 1� 10�6
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Like the fixed-gain control results, the performance measure for adaptive GPC is less than one at the
Rossiter modes, but is always accompanied by amplification in sideband frequencies, i.e., spillover is
present.

Using the converged controller coefficients and the open-loop plant model, the input sensitivity function
was computed for each of the test cases. The results are presented in Figs. 7b, 8b, and 9b. Again, the input
sensitivity is found to be in close agreement with the performance measurement. The character of these
control-performance measurements is as expected in view of the results presented in Part I. The physical
collocation of the actuator with the disturbance, in part, gives rise to the spillover that is observed in the
control results.

Previous control results obtained with fixed-gain GPC were based on the assumption of linear and
time invariant cavity dynamics for a given fixed Mach number. That assumption was used in the
present development and application of an adaptive GPC algorithm. The agreement between the mea-
sured control performance and input sensitivity function, both in the transient and steady-state cases,
tends to further support these assumptions. It is also of interest to compare the performance of adaptive
GPC to that of the fixed-gain GPC designed offline. Fixed-gain GPC and adaptive GPC results for M1 ¼

0:275 are compared in Figs. 10a–c. The pressure spectra for the two cases are nearly identical, both yielding
suppression of the first four Rossiter modes. The measured performance and input sensitivity are also
observed to be in close agreement, suggesting that the controller transfer functions for the two cases are
essentially the same. Examination of these performance measures at other test Mach numbers indicates similar
agreement.
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4.3. Adaptation to time varying Mach number

The adaptive GPC algorithm presented in this paper requires an estimate of the pulse response sequence of
the open-loop plant. For a fixed Mach number, the results of the previous section indicate that the pulse
response sequence can be determined offline from open-loop, input–output data and then subsequently used in
the real-time control algorithm. If the Mach number changes, however, the open-loop dynamics change. Then,
the open-loop dynamics will have to be identified with a recursive algorithm. This has not yet been
implemented in our experimental program. It is still of interest to consider the robustness of the adaptive
algorithm to changes in the freestream Mach number without re-identification of the system. To that end,
system identification was performed at M1 ¼ 0:275. The control algorithm was then run at that Mach
number and the controller was allowed to converge. The Mach number was then slowly increased to 0.28,
while the controller continued to run, and time-series data were collected. Then, the Mach number was
increased to 0.29 and data were again collected. Beyond this Mach number, a stable controller could not be
maintained.

Baseline and controlled pressure spectra measured at the rear-floor sensor for M1 ¼ 0:28 and 0.29 are
shown in Fig. 11. For this small change in Mach number ð�9%Þ the adaptive GPC is observed to maintain
suppression in the first four Rossiter modes. For comparison, results for a fixed-gain GPC controller designed
at M1 ¼ 0:275 are included in Fig. 11. That controller was designed with the methodology outlined in Part I,
with p ¼ 80, s ¼ 240, q1 ¼ 0, q2 ¼ 1, and l ¼ 0:05. For M1 ¼ 0:28, the performance of the fixed-gain
algorithm is similar to that for the adaptive algorithm. At M1 ¼ 0:29, however, the performance of the fixed-
gain algorithm begins to degrade, and beyond that Mach number, the controller became unstable.

Previous authors [21] have shown that for gradient descent algorithms where computation of the gradient
requires a model of the plant from actuator to error sensor, a sufficient condition for convergence is that the
ratio of the plant model to the true plant be strictly positive real at all frequencies. For the current application,
this condition can be written as

fðoÞ ¼ Re½Ĝ0:275ðjoÞG%

M ðjoÞ�40 8o, (19)

where G%

MðjoÞ denotes the complex conjugate of the true plant from actuator to error sensors at the Mach
number M, and Ĝ0:275ðjoÞ denotes the transfer function model for M1 ¼ 0:275, which was the model used in
the gradient update equation.
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Although Eq. (19) requires knowledge of the true plant transfer function at each Mach number, an
approximation to the condition in that equation can be obtained by using identified models of the plant at
each Mach number. The magnitude of the identified frequency response functions from actuator input voltage
to output pressure at the rear-floor sensor for Mach numbers of 0.275, 0.29, and 0.30 are presented in Fig. 12.
Even for this small change in freestream Mach number, the cavity-flow dynamics associated with the Rossiter
modes are observed to change. Fig. 13 shows the real part of the product in Eq. (19) for the path from actuator
to rear error sensor at these Mach numbers. At M1 ¼ 0:275 and 0.29 the real part is greater than zero across
the entire frequency range, indicating convergence should be stable. However, at M1 ¼ 0:30, the real part is
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less than zero just above 600Hz and just below 1000Hz. These results thus confirm the experimental
observation that a stable controller cannot be maintained beyond M1 ¼ 0:29 when using a fixed plant model
obtained at M1 ¼ 0:275.

5. Conclusions

In this article, self-tuning adaptive control of cavity flow-tones was considered, with particular emphasis on
the development of an online controller design algorithm. The open-loop cavity dynamics were assumed to be
linear and time invariant for any given fixed Mach number. A stochastic gradient decent algorithm was
employed to update the coefficients of a generalized predictive controller at each time step. Past input–output
data and an estimate of the open-loop pulse response sequence are needed to implement the algorithm for
application at fixed Mach numbers.

Measurements of unsteady cavity pressures and controller coefficients during adaptation were made to
examine the transient characteristics of the control algorithm. Joint time–frequency methods showed that
multiple Rossiter modes were suppressed and eventually reach a reduced steady-state level. The controller
coefficients were also found to converge to a steady-state level, and this implies that controller adaptation can
be turned off at some point with no degradation in control performance. Spectra of unsteady pressure time-
series acquired after controller convergence exhibited multiple Rossiter mode suppression for each of the
Mach numbers tested. However, as in the case of fixed-gain GPC, the adaptive GPC control performance was
limited by spillover in sidebands around the suppressed Rossiter modes. No significant reduction in the
broadband pressure levels was achieved in any of the control runs. The control performance for fixed-gain
GPC and adaptive GPC was compared and found to be nearly identical. This agreement further supports the
linear, time-invariant treatment of the open-loop cavity flow dynamics at fixed Mach numbers.

Finally, adaptive GPC was applied to the cavity flow-tone problem as the freestream Mach number was
varied. The algorithm was able to maintain suppression of multiple cavity tones over a modest change in
Mach number (0.275–0.29). Beyond this range, stable operation of the control algorithm was not possible.
This limitation was the result of using a fixed plant model in the algorithm. To achieve the ultimate goal of
self-tuning adaptive control for cavity flow tones, the system dynamics must be recursively updated. The
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present paper series has demonstrated that real-time feedback control of multiple cavity tones with online
control design is feasible. Previous work by Kegerise et al. [5] considered various recursive system
identification algorithms that can be used for ARX models of the cavity flow dynamics. With online system
identification, a self-tuning adaptive controller that can maintain suppression over a range of Mach numbers
should be realized.
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